

Flow cytometry tools for characterization of GMP cell products

Alexandra Rizzitelli, PhD

Project manager

Cell therapies Pty Ltd, Melbourne, Australia

What is product characterization?

- Identity (phenotype)
 - Surface markers
 - Gene expression
- Potency (efficacy)
 - Cytokine release
 - Killing assay

- Purity (contaminants) & impurity
 - Endotoxins
 - BSA
 - FCS
 - Other cells
- Safety (sterility)
 - Mycoplasma
 - Bacteria
 - Virus
 - Fungi

→ Ensure product quality, specification, lot-to-lot consistency

→ Complexity & heterogeneity

What is GMP?

- Defined manufacturing process
- Good Manufacturing Practices aims:
 - quality in <u>each</u> batch of product during <u>all</u> stages of the manufacturing process
 - TGA (Therapeutic Goods Administration) standards = control over the process
 - Donor selection / screening/ collection
 - Materials, equipment and reagents used
 - Transport, storage and shelf life
 - ➤ Labelling
 - Tests performed: FIO # release

Flow in GMP environment

- Identity
 - Multi-parametric cell surface /intracell staining (B, T cells, etc....)
 - Gene expression (mRNA, miRNA, etc...)
 - Viability
 - Count
- Impurity
- Potency
 - Intra-cellular cytokine production
 - Killing assay
- Affordable / Quick / Accessible -> primary choice

Flow in GMP environment

- Multiple platform
 - Instrument?
 - Analyser or sorter? -> open system
- Reagents grade
 - In Vitro Diagnostic (IVD)
 - Research use only (RUO)
 - Level of testing / specification (e.g Ab concentration)
- Flow in GMP = control of facility + instrument + material + reagents + method

Flow in GMP environment

- Evidences of:
 - Staff training
 - Procedure followed
 - Records
 - Control of material
 - Defined analysis steps

- Facility / instrument:
 - Temperature
 - Humidity
 - Cleaning
 - Maintenance
 - Performance (daily CST)

Validation of flow methods

- Validation is "to demonstrate that the analytical method is suitable for its intended purpose" ICH Guideline, validation of analytical procedures: text and methodology q2(r1) 2005
- Validation characteristics:
 - Specificity -> matrix interference
 - Accuracy -> agreement with a conventional value -> NO universal reference for flow
 - Precision
 - repeatability :short time interval, intra-assay
 - > intermediate precision: within laboratory, different days, operators, instrument
 - reproducibility : between laboratories
 - Range -> upper, lower concentration
 - Linearity -> within a range
 - Detection Limits
 - Quantification Limits
 - Robustness -> unaffected by small, deliberate variations (time)
- Other to consider:
 - Multisite standardisation
 - Control/reference sample
 - Sample preparation
 - Analysis, gating strategy

Subjective analysis - Gating

Standardizing gating

- Finak et al. Nature scientific report Feb 2016
 - Human Immune Phenotyping Consortium (HIPC)

Standardizing gating

- Instruments standardized:
 - Target values for PMTV
 - Compensation beads lyophilized
- Findings
 - Lyophilized cells slightly better than cryopreserved
 - Manual centralized more reproducible than per-site manual gating
 - Automated gating is as good as manual centralized gating except for not well defined population (dim/rare)

OpenCyto / FlowDensity

- Open Source packages using R language
- Series of written commands define gating strategy based on algorithm models
- 1 Ab panel -> 1 strategy -> 1 file saved
- Applicable to multiple experiment as long as same markers <u>and</u> fluorochromes are used in the sample

		##		alias	pop	parent		dims	gating_method	
		##	1:	nonDebris	nonDebris	root		FSC-A	mindensity	
		##	2:	singlets	singlets	nonDebris	FSC	-A,FSC-H	singletGate	
		##	3:	lymph	lymph	singlets	FSC	-A,SSC-A	flowClust	(
		##	4:	cd3	cd3	lymph		CD3	mindensity	
		##	5:	*	cd4-/+cd8+/-	cd3		cd4,cd8	mindensity	
		##	6:	activated cd4	CD38+HLA+	cd4+cd8-		CD38,HLA	tailgate	
		##	7:	activated cd8	CD38+HLA+	cd4-cd8+		CD38,HLA	tailgate	
		##	8:	CD45_neg	CD45RA-	cd4+cd8-		CD45RA	mindensity	
		##	9:	CCR7_gate	CCR7+	CD45_neg		CCR7	flowClust	
		##	10:	*	CCR7+/-CD45RA+/-	cd4+cd8-	CCR	7,CD45RA	refGate	
		##	11:	*	CCR7+/-CD45RA+/-	cd4-cd8+	CCR	7,CD45RA	mindensity	
		## gating_args collapseDataForGating groupBy								
		##	1:				NA	NA		
		##	2:				NA	gh <- gs[[1]]	
		##	3:	K=2,target=c(1	Le5,5e4)		NA	plot(gh)		
		##	4:			Т	RUE			
		##	5:	gate_range	e=c(1,3)		NA			
		##	6:				NA			
		##	7:	t	to]=0.08		NA			
##		8:	gate_range=c(2,3)			NA				
## 9		9:	neg=1,pos=1			NA				
	## 10:		10:	CD45_neg:CO	IR7_gate	NA				
		## 11:			NA					
		##		preprocessing_	_method preproces	preprocessing_args				
		##	1:			NA				
		##	2:			NA				
		##	3:	prior_flo	owClust	NA				
		##	4:			NA				
		##	5:			NA				
		##	6:	standardize_f	flowset	NA				
1		##	7:	standardize_f	flowset	NA			root	> (not debris) >
		##	8:			NA				
		##	9:			NA				
		##	10:			NA				
		##	11:			NA				

OpenCyto

OpenCyto

Automatic gating and GMP

- Strength:
 - No subjectivity
 - Increase reproducibility
 - Audit
 - Time / cost for large dataset
- Validation:
 - Software (FDA, 21 CFR part 11)

Quantification of RNA expression

- Prime Flow[®] (affimetrix)
 - Fluorescent In Situ Hybridization (FISH)

RNA expression

- Smart Flare[®] (Merck Millipore)
 - Endocytosis of gold nanoparticles
 - Live cells
 - > Cy3 (a546) or Cy5 (a647)

RNA expression

- Advantages
 - Potential for defining GMP cell product
 - Minor sub-populations
 - Activation status
 - Potency
 - Lineage restriction
 - In-process quality control
 - Specifications
- Inconvenients
 - Limited to detection of 3 RNA per cell at one time
 - GMP grade materials
 - For information only
 - Release criteria
 - Assay validation

Mass cytometry - CyTOF

- TOF (Time-of-Flight) based on:
 - Electric field with defined intensity and length
 - Metal ions of different mass (isotopes)
 - Detector
 - Heavier ion = longer TOF
 - Lanthanide elements (rare metal)
 - Antibodies labels with metal isotopes

CyTOF

CyTOF

- Advantages
 - No spectral overlap
 - No 'auto-fluorescence'
 - Increase number of parameters (35)
 - Quantitative
 - Well defined phenotype: signature card / barcode
- Inconvenients
 - No equivalent of SSC/FSC
 - No cell recovery
 - Low cell efficiency (80% cell lost)
 - Slow acquisition (double time/flow)
 - Limited commercially available labelled Ab
 - GMP grade reagents/software

Conclusions

- GMP cell product characterization
 - Well defined process
 - New tools will help defined product
 - Automatic gating
 - RNA expression
 - CyTOF signature card
 - Quality improvement of cell-based therapies

thank you

